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LETTER TO THE EDITOR 

Disorder points of the IRF and checkerboard Potts models 

R J Baxtert 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, GPO Box 4, Canberra, ACT 2601, Australia 

Received 7 August 1984 

Abstract. Conditions are given for a general ‘interactions-round-a-face’ ( IRF) model in 
statistical mechanics to have a disorder point, and expressions obtained for the free energy 
and intra-row correlations. These are applied to the checkerboard Potts model, thereby 
verifying a re( ent conjecture by Jaekel and Maillard. 

A number of papers have appeared in the last 15 years that deal with disorder points 
of particular two-dimensional lattice models (Stephenson 1970, Welberry and Galbraith 
1973, Welberry and Miller 1978, Verhagen 1976, Enting 1977 and 1978, Rujan 1982, 
Peschel and Rys 1982, Dhar 1982). Some use the statistical theory of Markov processes, 
others (in particular Rujan 1982) are based on the transfer matrix method of statistical 
mechanics. 

Here I shall apply the latter technique to the general IRF model (Baxter 1980) on 
the square lattice (drawn diagonally). I shall define a disorder point as one at which 
the maximal eigenvector of the transfer matrix is a direct product of factors, each 
factor corresponding to an edge of the lattice. If this is true of both the right and left 
eigenvectors, then the correlations within a horizontal row are those of a one- 
dimensional nearest-neighbour model. These correlations must therefore decay 
exponentially with distance and there can be no long-range order, at least in the 
horizontal direction. 

In this letter these methods are applied to the checkerboard Potts model (i.e. the 
Potts model on the square lattice, with alternating interactions). A recent conjecture 
by Jaekel and Maillard (1984) is thereby verified. 

We now consider the IRF model. Draw the square lattice diagonally, as in figure 
1. With each site i associate a ‘spin’ a,, which can take any prescribed set of values 
(e.g. or -1; or the integers 1 , .  . . , q ;  or ‘red’, ‘white’ and ‘blue’). To each face assign 
a Boltzmann weight factor w(a l ,  uJ, ak, a,), where i, j ,  k, 1 are the four sites round the 
face, arranged anti-clockwise as in figure 1. Then the partition function is 

= c n w(at, a,, a,, 4, ( 1 )  
{v} (bJ.kl) 

where the sum is over all values of all the spins, and the product is over all faces of 
the lattice. 

Now consider a horizontal row of faces of the lattice, as in figure 2. Let U =  
{a,, . . . , a,} be the set of lower spins, as indicated, and let u’={a{,  . . . , a;} (with 

t This work was performed while the author was visiting the Istituto per I’hterscambio Scientifico, Torino, 
Italy. 
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Figure 1. The square lattice, drawn diagonally, show- 
ing a typical face i, j ,  k, 1. 

Figure 2. A horizontal row of faces of the lattice: 
spins U,, . . . , U,, lie on sites in the centre and lower 
rows; U;, . . . , U; on sites in the centre and upper 
rows. If i is odd, U: = U,. 

a;,-, = a2,-,) be the upper spins. Then the product of the Boltzmann weights of the 
faces can be written as 

n / 2  

V ( a ;  a') = n w((+2,-1, U2,, (+2,+1, '+;,)S(a2,-1,4-1), (2) 
J = I  

where we impose cyclic boundary conditions, so that = a,; the integer n must be 
even. 

We can regard the V( U ; a') as elements of a transfer matrix V that takes one from 
the upper spin set a' to the lower set a. For the next row we have a similar transfer 
matrix W ,  except that now the positions 1, .  . . , n are displaced one unit to the right 
(or left). Thus 

W ( a , ,  . . . , an I a:, . . . , a;) = V(a2,  . . . , an, (TI ; a;, . . . , a;, a;) .  (3) 
In the usual way (Baxter 1980), we can now write the partition function for a lattice 
of 2m such rows (with mn sites) as 

Z = Tr( VW)". (4) 

For m large, it follows that 

Z - A2", 

where A' is the numerically largest eigenvalue of VW, and can be taken to be given 
by the pair of equations 

Vy = Ax,  WX = Ay. (6) 

Here x, y are the right eigenvectors of VW and WV, respectively. For a physical 
model, all Boltzmann weights w(u,, uj, ak, a,) must be non-negative, so from the 
Perron-Frobenius theorem (Frobenius 1908), it must be possible to normalise x and 
y so that all their elements are non-negative. 

The first of equations (6) can be written more explicitly as 

1 V ( a ;  a ' ) y ( a { ,  . . . , a;) = Ax(a,, . . . , U n ) ,  
U' 

(7) 

where x ( a ) ,  y ( a )  are the elements of x, y.  In general we cannot solve equations (6), 
but we can look for the conditions under which x ( a ) ,  y ( a )  have the simple product 
forms: 

x ( a 1 , .  . * , an) = f ( a , ,  c + 2 ) g ( a * ,  v 3 ) f ( a 3 9  a 4 )  . . . g(vn ,  Cl), 

~ ( ~ 1 9 . .  * 9 U n )  =g(uI, ~ 2 ) f ( ( + 2 ,  a 3 ) g ( u j ,  a 4 )  * .  . f ( a n ,  a,). 
(8) 
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Substituting these into (7),  using (2 ) ,  we find that the equation is satisfied if there 
exists a parameter K and a single-spin function cp(a) such that 

A =  K n i 2  (9) 

and 

for all values of a1, a2, a3. 

we see that (for m large) 
Further, the second of the equations (6) is then also satisfied. 

= z l / m n  

so K is the partition function per site. 

9 

From ( 5 )  and ( 6 ) ,  

If each U, takes q values, then (10) is a set of q3 equations. On the other hand, 
(10) is unchanged by renormalising f(a,  b ) ,  g(a, b ) ,  cp(a), or  by multiplying them by 
[ u ( a ) u ( b ) ] - ' ,  u ( b ) u ( a ) ,  u ( a ) u ( a ) ,  respectively (for any functions u ( a ) ,  u ( a ) ) .  It 
follows that we have only 2q2 - 9 distinct unknowns in f ;  g, cp, K at our  disposal, so 
for a general Boltzmann weight function w we cannot satisfy (10). 

However, for certain special functions w it is possible to satisfy (10 ) .  If f(a, b) 
and g(a, b )  are non-negative, then A is the maximum eigenvalue of the transfer matrix, 
and  K is the partition function per site. 

We can represent (10) pictorially as in figure 3: the LHS is the partition function 
of the square on the left, weights w, g, f being associated with the face and  the top  
edges, their product being summed over the spin denoted by a full circle. The R H S  of 
( I O )  is represented by the R H S  of figure 3, weights cp, f ;  g, cp-l being associated as 
shown with the sites and  edges. 

Correlations. So far we have discussed only the right eigenvectors x, y of VW and 
W. Let 2, y' be the left eigenvectors, i.e. 

x'v = Ay', 9 w = '42, (12)  

They will be of the form (8) (with x, y ,  f, g) replaced by (2, y',x g') if there exists (p 
such that 

c W ( U I ,  4, (+3, V2)f(flI ,  d)g'(aS, ad = K G ( f l I ) g ' ( ~ I ,  4f(% gd/@(flJ* (13 )  
vi 

For some models (in particular for the checkerboard Potts model), it turns out that 
if ( I O )  can be satisfied, so can (13) .  We then know both the right and  left eigenvectors 
of W. The spins a i , .  . .,a,, in figure 2 all lie on a zig-zag horizontal line. Let 
L ( a l ,  . . . , a,) be any function of these spins only. Then its expectation value is 

(L) = ( L ( a , ,  . . . , a,)> 

=z-' 1 L(al,. . . 7 a n )  w ( a n  aj, ak, a,) 
( 1. i .k /  I 

= 2 - I  TrL( VW)'", 

where L is the diagonal matrix with entries L ( a , ,  . . . , a,)S(a, U'). In the limit of m 
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However, S is just the partition function of a one-dimensional chain of spins with 
alternating nearest-neighbour interactions. Further, from (16) we see that (L) is 
obtained by averaging L over this one-dimensional system. 

g'), then 
intra-row correlations of the IRF model are the same as those of the one-dimensional 
model with partition function S. The latter model must be disordered (except possibly 
at zero temperature), so intra-row correlations must decay exponentially. In this sense 
the IRF model must then be disordered. 

It follows that if (10) and (13) are satisfied (with non-negative f, g, 

Figure 3. Pictorial representation of equation (10): 
the function w is associated with the face; f; g with 
edges; and cp, cp-' with sites. The full circle denotes 
a spin over whose values the LHS is to be summed; 
open circles denote spins free to take any value. 

Figure 4. The square lattice 2 (broken lines, circles 
and squares) of the checkerboard Potts model, and 
the lattice Y' (full lines and circles) of the corre- 
sponding I R F  model. 

Now consider the checkerboard Potts model (Jaekel and Maillard 1984) on the 
square lattice 9 of broken lines shown in figure 4. Each spin ui takes the values 
1,2, . . . , q and adjacent spins ui, uj interact with energy -k,TK,S(ai, uj), where kB is 
Boltzmann's constant, T the temperature and K ,  is a dimensionless interaction 
coefficient associated with the edge ( i ,  j ) .  There are four coefficients Kl ,  . . . , K4, as 
indicated in figure 4. The partition function is 

where the product is over all edges ( i ,  j )  of 9, K ,  being the associated coefficient. 
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First sum over all spins on sites denoted by small squares in figure 4. We obtain 
a homogeneous IRF model on the remaining lattice 2" made up of the full circles and 
lines in figure 4, with weight function 

w(a ,  b, c, d )  = 1 exp(K,&, + K 2 &  + K3&, + K 4 h )  (20) 

(written a, b, c, d for the four spins round a face of 2, and s for the summed centre 
spin). The partition function 2 is now again given by (1). 

7 

We now look for solutions of (10) of the form 

f( a, b )  -- g (  a, b )  = GG(a*b),  cp(a) = 1 .  (21) 

(Thus f ( a ,  b )  = F if a = b ;  while f(a, b )  = 1 if a # 6.) 
Thus we have three unknowns at our disposal: K,  F and G. By considering the 

cases when ul, u2, u3 are all equal, two of them are equal, or all are different, we 
obtain five apparently distinct equations from (10). This suggests that we shall have 
to put two constraints on w, i.e. on the interaction coefficients K I ,  . . . , K,. 

In fact Jaekel and Maillard (1984) have conjectured that the model has a disorder 
point provided only one constraint (their equation (6)) is satisfied, and give the 
corresponding value of K .  We can use these conjectures to find that they predict F = 1, 
i.e. 

f ( a ,  b )  = 1. (22) 

Thus we can ignore the functionf in (10) and in figure 3. It is now quite easy to verify 
Jaekel and Maillard's conjecture. Set 

w, = exp Ki ,  i = 1 , .  . . , 4 ,  

and write a, b, c, d for uI, u2, u3, U;. Using (20), the equation (10) becomes 

(23) 

Consider first the d-sum on the LHS. This depends only on a and s, and can readily 

(25) 

be performed to give 

(9 - 2 +  G + ~ 4 ) [ ( q  - 1 + G w , ) / ( ~  - 2  + G + ~ 4 ) ] ' ( ~ , ~ ) .  

From (24), we want the LHS to be independent of a ;  this will be so if (25) is 
cancelled (as regards its a, s dependence) by the term w ~ ' ~ ~ ' ) ,  i.e. if 

W , ( q  - 1 + G w , ) / ( ~  - 2 +  G +  w,) = 1. (26) 
The LHS then depends only on b and c, and the s-summation can readily be performed. 
We find that the LHS of (10) is 

( 4  - 2 +  w ~ +  ~ 3 ) ( q  - 2  + G + ~ 4 ) [ ( q  - 1 + w Z W ~ ) / ( ~  - 2 +  w Z +  w ~ ) ] ' ( ~ - ~ ) .  (27) 
Comparing this with the RHS, we see that (24), and hence (28), is satisfied if 

6 = ( q  - 1 + w2w3) / (q  - 2 + w2 + w3) ,  

K = ( 4  - 2 +  W 2 - t  W 3 ) ( q  - 2 +  G +  W4). 

(28) 

(29) 
Substituting (28) into (29) and (26), we obtain 

K = 4'- 3q + 3 + ( 4  - 2)( W2 + W3 + W 4 )  + W2 W, + W 3  W4+ W4W2, 

WI = K / K 9  - 1 ) ( 4  - 2 + w2 + w3 + w4) + w W 3 w 4 1 ,  

(30) 

(31) 
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or equivalently, 

W ]  - 1 1 - w ,  =n l + ( q - l ) w ,  i = l  q - l + w i .  
(33) 

Thus if w I , .  . . , w4 are related by (33) (and w I , .  . . , w4, G are real and non-negative), 
then K is given by (32). 

Noting that Jaekel and Maillard’s a, 6, c, d are our w2,  w3, w4, w l ,  and that their 
2 is our K ” ~  (since the Potts model lattice P has twice as many sites as the IRF model 
lattice P’), we observe that (32) and (33) are the same as Jaekel and Maillard’s 
equations (5) and (6). Thus we have proved their conjecture. 

Although w4 enters (26)-(29) in quite a different way from w2 and w3, the final 
results (30)-(33) are symmetric in these three parameters. This is consistent with Jaekel 
and Maillard’s intriguing suggestion that perhaps 2 is in general a symmetric function 
of w1, w2, w3, w4. 

It also means that we can satisfy (13) simultaneously with (10); (13) can be obtained 
from (10) by interchanging K 2  with K4, and replacing cp, f, g by 6, g, 1 This leaves 
(29)-(33) unchanged, while (22), (21) and (28) become 

b )  = 1, f( a, b )  = FS(’sb) (34935) 

F = ( q  - 1 + w , w 4 ) / ( q  -2+ w,+ w4). 

p ( a ,  b )  = F 6 ( a * b ) ,  r (  a, b )  = G6(a3b) .  (37) 

(36) 

Thus p ( a ,  b )  and r(a,  b )  in (17) are 

Provided the disorder point condition (33) is satisfied, it follows that intra-row correla- 
tions of the Potts model (involving only the spins U], U,, . . . , U, in figure 2) are those 
of the one-dimensional model with partition function (18). In particular, the two-spin 
correlation function is 

Then from (16), (18) and (37) we find that (in the limit of n large) 

c,, = D,/ D,. (41) 

(42) c, = (pR)(J-’)’2. 

Since P and R are numerically less than one, we see that the correlation C ,  decays 

In particular, if i and j have the same parity 
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exponentially to zero as the spin separation j - i  increases. This means that the 
correlation length is finite and there is no long-range order: the system is disordered 
(at least in the horizontal direction). 

Summary. The general IRF model, with weight function w, is at a disorder point if 
there exist K ,  cp( a )  and non-negative functionsf( a, b ) ,  g (  a, b )  such that (10) is satisfied. 
The partition function 2 is then given by ( 1  1 ) .  If (13) can also be satisfied (which 
often is the case), then the intra-row correlations (involving only the spins U,, U*, . . . , U,, 
in figure 2) are those of the one-dimensional nearest-neighbour model with partition 
function ( 1  8). Such correlations must therefore decay exponentially with spin-separ- 
ation, and there can be no long-range order in the horizontal direction. 

In this letter these general considerations have been applied to the checkerboard 
Potts model. We have verified in (32) and (33) the disorder-point conjecture of Jaekel 
and Maillard (1984), and have obtained the simple explicit formula (41) for the two-spin 
intra-row correlation function. 
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